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What behavior can be explained as the Bayes equilibrium of some game? The
main finding is—almost anything. Given any Bayesian (coordination) game with
positive priors, and given any vector of nondominated strategies, there is an
increasing transformation of each utility function such that the given vector of
strategies is a Bayes (Nash) equilibrium of the transformed game. Any non-
dominated behavior can be rationalized as Bayes equilibrium behavior. Some com-
ments on the implications of these results for game theory are included. Jowrnal of
Economic Literature Classification Number: 026. ¢« 1986 Academic Press, Inc.

I. INTRODUCTION

There has recently been much success in explaining a variety of diverse
economic behaviors as outcomes associated with the Bayesian equilibrium
of a game. One of the more elegant examples can be found in the use of the
revelation principle and the hypothesis that a coordination mechanism be
incentive compatible, and efficient, to derive restrictions on the form of
optimal auctions. The power of this approach can be seen in Matthews
[12], Milgrom and Weber [14], Myerson [17], Myerson and Sat-
terthwaite [18], Wilson [21, 227, and Gresik and Satterthwaite [4]. In
this research a standard set of simplifying assumptions appears. These fre-
quently include risk-neutral agents with quasi-linear preferences and
independently distributed private values. An unanswered question s

* This paper is an extensive revision of one presented in the Theory workshop at Caltech
and at the Institute for Mathematics and lts Applications at the University of Minnesota. |
thank both sets of participants for their suggestions and comments. | especially thank Kim
Border and Charles Plott who asked the right questions at the right times. The revision of the
first veision has benefited from the insightful and careful comments of Steve Matthews, Mark
Satterthwaite, Robert Wilson, and a good referee. Finally, I thank the intransigent referee of
Easley and Ledyard [1], whose misguided refusal to consider the behavior proposed in that
as reasonable led me to the research reported here.
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whether it is the assumption of Bayes equilibrium behavior or the
assumptions of specific utility functions and beliefs which drive the resuits.
If the former, then the assumptions are merely simplifying and the con-
clusions of research in this area can be widely applied; if the latter, then the
assumptions are substantive and care must be taken not to attribute too
much to any particular result.

To sort this out I simply ask, “What aggregate behavior can be
rationalized as the Bayesian equilibrium of some game?” Economists will
recognize a close similarity to the question, “What can be an aggregate
excess demand function?” (Sonnenschein [20]). I am interested, therefore,
in the content of Bayesian equilibrium and incentive compatibility as
positive theories. I strongly believe that they are sensible normative prin-
ciples for guiding the behavior of individuals in strategic situations with
incomplete information; but unless the hypothesis of Bayesian equilibrium
provides implications independently of the specific functional form of
utilities and beliefs, it may be of little use as a positive model to explain
actual observations. In particular, it would then be a mistake to identify
certain observed behavior or institutions as “not sensible.”

The basic components of models which utilize Bayesian analysis are
admirably detailed in Myerson [17] to which I refer the novice reader.
These components are agents, their preferences over outcomes, their beliefs,
and a mechanism for converting messages of the agents into outcomes.
Consistent with Bayesian analysis, it is also assumed that beliefs can be
represented as probability measures and behavior can be derived from
maximization of expected utility functions which are consistent with both
preferences and beliefs. The content of the Bayesian equilibrium hypothesis
obviously depends on whether or not these components are restricted a
priori to some admissible subset. To make a systematic inquiry into the
explanatory power of that hypothesis, we will successively tighten the a
priori restrictions on these components and identify what behavior remains
consistent with the hypothesis. As we will see, the restrictions must be very
severe before any meaningful implications for behavior arise.

I begin, in Section III, by applying a slight variation of the revelation
principle, due to Gibbard [3], which significantly simplifies the analysis.
Referring to the combination of preferences, beliefs, and utilities as the
environment (Hurwicz [7]), we observe that, subject to some infor-
mational restrictions, behavior in the context of a specific mechanism, or
game form, is a Bayesian equilibrium in some admissible environment if
and only if there is an admissible environment such that the performance
function, the composite mapping of the specified strategies and outcome
rules, is itself an incentive compatible direct revelation mechanism. This
means that if we can identify the class of direct revelation mechanisms for
which there is an admissible environment such that that mechanism is
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incentive compatible, then we will know what observed behavior is con-
sistent with the Bayesian equilibrium hypothesis.

In Section 1V.2 we show that without further restrictions on the choice of
environment, any performance can be rationalized in a non-trivial way by
a Bayesian equilibrium. In Sections IV.3 and IV.4 we show that, even if
both prior beliefs and preferences are specified a priori for each vector of
types, any rcasonable performance can still be rationalized as a Bayesian
equilitrium for some utility functions consistent with those preferences. In
particular, if and only if truth is a dominated strategy for that performance
functicn qua mechanism can we not rationalize behavior. (A corollary of
this result is that if we can choose utilities, the only behavior we cannot
rationalize is the behavior of agents who do not use a dominant strategy
when one is available.)

This key result can be stated more starkly. Given any Bayesian game with
positive priors and any strategy which is not dominated, there is a
monotonically increasing transformation of the utility functions such that the
given strategy is a Bayesian equilibrium of the transformed game. Since the
transformation may need to depend on the entire vector of types, we con-
sider, in Section 1V.5, restrictions on utilities. Some results are obtained
but a full characterization remains to be done.

A summary of all the resuits and some observations are provided in Sec-
tion V. For now let me simply state what 1 consider to be the main finding
of this research: Even if preferences and beliefs of all agents, as well as the
game form, are pre-specified, any non-dominated behavior can be rationalized
as Bayesian equilibrium behavior. Apparently arbitrary non-dominated
behavior should be eliminated a priori as not being sensible, only if one is
willing to assume very specific functional forms for utilities and beliefs.

II. THE FRAMEWORK OF ANALYSIS

The context of my analysis is the Bayesian collective-choice problem.
Although T am convinced that most of my results can be extended to more
general Bayesian incentive problems, I have chosen this context for ease of
comparison to other papers. A Bayesian collective-choice problem is an
incomplete information game in which outcomes are jointly feasible for all
players together. A mechanism is used to provide the collective choice,
given information provided by the agents. For a clear presentation of this
model and its philosophical foundations see Myerson [17].

More formally, there are # agents numbered i = 1,..., n. We let T' denote
the set of possible types of agent i, and let T=T"'x -+ x T". D is the set of
possible outcomes or group choices. Each agent has a von Neumann-
Morgenstern utility function, u'(d, ), which denotes the payolff to i if d is the
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group choice and if t=(¢,,.., ¢,) is the vector of agents’ types. Each agent
also has a probability function p'(¢_;t;), where ¢_,eT_,=
T'x -+ xT""'xT'*!'x --- x T", which denotes the subjective probability
that player / would assign to the event ¢ _; if i’s actual type were ¢,.

The tuple a=[T7,D,u', p',..,u", p"] is called a Bayesian collective-
choice problem by Myerson. We assume, as is standard, that the structure
of a is common knowledge to all players and that each i knows his own
type. I will call the 2-tuple of functions, <{u’, p'> = €', the characteristic of i
and the vector e= {e',.., ¢"), the environment. This language is consistent
with that pioneered by Hurwicz [7] and in common use in the literature.

To model the method by which outcomes are selected as a function of
players’ types, I use the concept of a mechanism (Hurwicz [7]), sometimes
called a game-form (Gibbard [3]). A mechanism is a pair, (M, g} where
M=M"x --- x M". The set M" is the possible messages agent i can use and
M is called the language. The outcome rule g(m',., m") maps M into
probability measures on D. We let 4(D) be the set of all such measures and
assume the structure of (M, g> is common knowledge. This model of a
mechanism is perfectly general and can cover sealed-bid auctions, oral auc-
tions in which players’ oral responses can depend on others’ responses,
bargaining models, political processes, etc. Messages can be simple num-
bers, a monetary bid, or complex conditional responses of the form, if he
says a and she says b and then he says ¢, I will say d. Thus, even though
may not know how to explicitly describe the mechanism of a particular
complicated institution such as the experimental double oral auction or the
used car market, it is possible to consider them, conceptually, as
mechanisms.

Given a mechanism (M, g), agents choose messages m’ as a function of
their types and their common knowledge. We call a mapping f: T' > M'a
strategy for i and sometimes use (¢, g, a) to denote its (possible) depen- -
dency on the common knowledge of (g, «). Vectors of strategies of par-
ticular interest as the fundamental solution concept in this model are the
Bayes equilibria for the mechanism <M, g) in the collective choice game
a=<{T,D,e>. We let u(d, m) be the probability assigned to 4 by the
measure g(m)e 4(D). Then

[, 0y pie=", 1) i, Bt B dd

represents the expected utility payoff to i if i’s type is ¢ and if
B=<{B',.., B") is the vector of strategies used by each player, where | is the
appropriate Riemann-Stieltjes integral. Formally, g* = (#*',.., f*"> is a
Bayesian equilibrium of g in a, if and only if, for each player i, f*' is a
function from T to M’ such that for each t'e T"
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ju"(d, 1) P, 1)) 1uld, B*(1)) dd dr

= max ju"(d, 1) Pt ) uld, BH()m,) dd di,,

mie M

where
BHO)m'y = XY, XU )l BT, BRI ).

I will sometimes use B*(¢; a, g) to represent the dependency of the Bayes
equilibrium on the common knowledge of « and <M, g>.

It is convenient to have a way to summarize the net result of the com-
bination of «, g, and f*. This is typically done with a performance function
which describes the choice, d, made for each vector of types, . Formally,
we call the function IT: T — A(D), where T1(t) = g(B(1)), the performance of
g in a for the strategy B. Of particular interest is the performance of g in «
for the Bayes equilibrium strategy.'! We will denote that as
IT*(t) = g(B*(1; g, @)).

ITI. QUESTIONS AND PRELIMINARIES

Two main types of questions have been addressed in this framework. The
first tyoe, generally called optimal mechanism design, asks: Given o if f* is
Bayes =quilibrium what performance is possible by varying the mechanism?
Also, what mechanism gives the best performance? This type of question
was posed but unanswered in Hurwicz [8]. Later papers by Harris and
Raviv [5], Harris and Townsend [6], Matthews [127], Myerson [167], and
Wilson [22], have provided some answers. Wilson’s paper provides a good
summary. The research rests on the revelation principle (first formalized by
Gibbard [3]). Since this principle is of importance to our later results, let
us take a brief glimpse.

We call any mechanism {M, g) a direct-revelation mechanism if M’ =T’
for all agents i. That is, each agent announces a, possibly false, type which
is used by g(¢',.., t") to pick ue (D). Of particular interest are direct-
revelation mechanisms for which truth is a reasonable strategy. We call a
mechanism (M, g an incentive-compatible direct-revelation mechanism for
o (an icdr) if and only if M’= T" for all agents and p*'(1')=t', for all t'e T*
and all i, is a Bayes equilibrium for g in a.

(Note: This does not require that §* be the unique Bayes equilibrium.

' When there is more than one Bayesian equilibrium we will consider a suitable
generalization of IT*.
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See Postlewaite and Schmeidler [19] for some of the problems of non-uni-
queness.)

THeoreM 1 (Revelation principle, Gibbard [3]). Given (M, g, «, and
B TP = M’ for each i, such that B/(T")=M":

A. B is a Bayes equilibrium for (M, g> in o if and only if
B. (T, a), where a(t)= g(B(¢)), Vt, is an icdr in a.

Remark. The condition that B(T')= M’ is needed to show that B= 4.
The statement that 4 = B is valid even if f/(T")c M'.

Thus one answer to the question, what performance is possible?, is that
any function from T to A{D) which is itself an icdr is a possible perfor-
mance function for some mechanism and only those functions are possible.
The question, what mechanism gives the best performance?, involves
choosing among all icdr’s. The standard method is to define a concept of
efficiency and then to select an efficient icdr. Since we will not need that
machinery for this paper, we refer the interested reader to Myerson [17].

The second type of common question has been concerned with the
implementation of desired performance. It has been asked: Given « and 11,
does there exist a mechanism (M, g> such that if §* is a Bayes equilibrium
for g in « then g(B*(t)) = II(1)? This question has been addressed by Laf-
font and Maskin [9], Postlewaite and Schmeidler [19], and Ledyard
[10], among others. Using the revelation principle, the answer is yes only
if IT is itself an icdr mechanism.? The converse needs some additional
assumptions. See Theorem 2.

One can argue that much of the above is an essentially normative
approach to behavior in strategic situations with differential information.
While the answers to the first question, what can be the performance of -
some g in a?, give some direction to the positive construction of
explanatory models, they do not go far enough. We need to know the
answer to the following question: given T, D, {M, g>, and II, does there
exist a such that if p* is a Bayes equilibrium for g in « then does
gB¥( N=1I()? In effect, given the institution (M, g), can we
“rationalize” the performance IT as the result of Bayesian behavior?’

Since T have already indicated in the Introduction why one should be
interested in this question, let me turn to an initial answer which is closely
related to the revelation principle.

? Another set of papers by Matthews [11], Milgrom [13], Milgrom and Weber [14], and
Wilson [21] pick a particular (M, g) and ask whether its performance is good. For example,
some ask whether II( ;n) is an icdr as n— 00. See Wilson [22] for other references.

3 M. K. Richter has coined the phrase “revealed game theory” to describe this tye of issue.
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THEOREM 2.  Given o, [1, and (M, g):
A BT — M, for each i, such that:
Al. BY(TY= M, for each i,
A2 Bis a Bayes equilibrium for {M, g> in o, and
A3, II(t)=g[B(N], YieT, if and only if
B. The following are true:*

B.1. {mjgm)=I(1)}# P, vieT.
B.2. There is a selection

(' (" Yy (1)) € {m| g(m) = (1)}, vt

with the property that 5 (T')= M', Yi, and
B.3. (T, IT) is an icdr mechanism in «.

Proof (A= B). A.3 implies B.1, since then

B(tye {m| gim)=I(1)}, VieT.

To establish B.2, let '(+') = p(+) for all f'e T'. A.1 and A.3 then imply B.2.
B.3 follows, using Theorem [, from A.2.

(B=4). Let p'(t')=n'('), Vi'e T" and Vi. Then n'(T")= M' implies
A.l. Also B.2 implies that g(n(t))=I1(t) for each ¢ which implies A.3.
Finally, using Theorem 1 and the fact that p'(7) = M‘, B.3 implies A.2.

QED.

Remark. As in Theorem 1, the range conditions that n’(T")= M’ and
A.1 are only needed to show that B= A. The opposite implication that
A = B can be established without these.

This theorem is mainly the revelation principle with condition B.2 added
to ensure that the performance correspondence can be “decomposed” into
indivic'ual behavioral components consistent with (M, g>. It is similar but
not quite identical to the requirement that {m| g(m)=1II(t)} be a coor-
dinate correspondence from 7T to M in the sense of Mount and Reiter [15].

A corollary to Theorems | and 2 provides the main principle of analysis
in modeling and rationalizing observed behavior.

CoROLLARY 1.1. Given D, T, (M, g>, and 6': T'— M', for all i, such
that 8'(T'y= M". 3« such that § is a Bayes equilibrium for g in « if and only
if 3o such that (T, g(3())) is an icdr mechanism in a.

4B.1 is needed to ensure that B.2 is not vacuous.
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If we observe the behavior J in the institutional setting described by
(M, g>, we will be able to say agents acted as if they were playing a
Bayesian game if and only if there is some environment « such that the per-
formance mapping I1(1)= g[5(¢)] is itsell an icdr mechanism in that
environment.

The conclusion of this section is obvious. Leaving aside issues of com-
plexity, computability, misperceptions, and the size of the message space,
most remaining modeling questions will be answered once we know for
which pairs, (a, IT), of environments and performance maps, (T, IT) is an
icdr mechanism in o. I turn to that now.

IV. INCENTIVE COMPATIBLE DIRECT REVELATION

When can we find an environment, «, such that the direct revelation
mechanism /7 is incentive compatible in «? Or, when can we rationalize the
performance I7? The answers, provided in this section, depend on the prior
restrictions one places on the allowable choices of a. As we will see, unless
utilities and priors, («’, p'), are constrained to lie in a very narrow set, vir-
tually any /7 is incentive compatible in some allowable a.

IV.1. No a priori Restrictions

Our first result is that anything is rationalizable as Bayes equilibrium
behavior. This is trivial but is included for completeness and to provide
motivation for the more complicated later propositions.

THEOREM 3. Given {D, T, there is an e such that every function from T
to D is a direct revelation incentive compatible mechanism in o =D, T, e .

Proof. For every agent i, and every type t'e T, define u'(d, t) = a'(¢’) for
all (d, t_,), where a'(+) is any function from 7% to R'. Let p'(-, t;) be any
measure on T _,. Then, since i is indifferent among outcomes, anything,
including Bi(1') =1, is a Bayes equilibrium for (T, IT) in this environment,
for any mapping IT: T — A(D). Q.ED.

IV.2. Any Certainty Mechanism Can Be Rationalized

The previous theorem is not an entirely fair test of the power of the
hypothesis of Bayesian equilibrium behavior. There are two obvious ways
to make the construction of the required a more difficult: restrict the choice
of u' and p’ or strengthen the concept of incentive compatibility. We will try
the latter first.

DEerFINITION. A direct revelation mechanism I7: T — A(D) is strictly
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incentie compatible in « if and only if, for all i, i'e T, se T’ such that
u(d, t) £ u(d, t/s) for some (d, t_,),
Ula, s, Y < U, t', 'y for s#1¢,

where
Uit s, )= [ w(d, 0) w(d, ys) dd i,

and p(d, t) is the probability assigned to d by the measure I1(z).

For strict incentive compatibility, truth must be a unique maximizer of
expected utility, unless the mechanism does not care. The mechanism can
be indifferent, but an agent cannot.

Remark. The existence of e such that IT is a strictly icdr mechanism in
(D, T, ¢) when D and T are finite is equivalent to the existence of vectors Z|
for all i and /e T7 such that, for all /e T,

Y Y Zid t_ ) u(d, 1) — u(d, t/5)]>0

t—i d
when 1= (t/l) and 3(d, ¢) such that u(d, ) # u(d, t/s). This is true because,
given Zi(d, t_}), we can easily find u'(d, t) and p'(r _,, /) such that

w(d i p'(t_;, )=Zid, t_;), Vd

Myerson [17] contains a full development of some of the implications of
this insight. :

We can turn to the theory of linear inequalities for our answers. In this
case we use a variation on Farkas’ Lemma.

THEOREM 4 (Gale [2], Theorem 2.10). If D and T are finite, 3Z such
that

Z Z Z(d! tA:)[ﬂ(d, t—i’ 1)—#(‘1’ t—i>s):l >0
t_; d
for all se T" if and only if there do not exist x,20, x #0 such that

Z xs[ﬂ(d,’—nl)—li(d,t—i,s)]=0 (1)

s#!
forall (d,t_)eDxT~"

Many of our results will be more easily interpreted for mechanisms
which only assign probability 0 or 1 to any de D.
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DerNiTION. A direct revelation mechanism I7: T— D is called a
c-mechanism (certainty mechanism). Those mechanisms such that
IT: T— 4(D) which are not c¢-mechanisms are called p-mechanisms
(probabilistic mechanisms).

Remark. Sometimes concentration of the analysis on ¢-mechanisms can
be done without loss of generality. This is because icdr mechanisms form a
polyhedron, a closed convex set, given a, which can be described by its
extreme corners, where u(d, 1) =0 or 1. However, since we begin with the

mechanism and not «, we must consider p-mechanisms as well as
c-mechanisms.

COROLLARY 4.1. Given any c-mechanism, I1. T — D, with T and D finite
3e such that I1 is strictly incentive compatible in o= (D, T, e).

Proof. Pick i and /e T'. We eliminate any s for which IT(¢/) = I1(t/s)
for all ¢ ;e T ' Then, applying Theorem 4, suppose the desired Z vector
does not exist. But then 3x =0 such that 3", x,[u(d, t/I) — p(d, t/s)] =0 and
x#0. For each s, 37, such that [1(i/s') = d # g(i/I). Thus,

Y x,[d, D) — uid, i/s)1 =, x,[0 - p(d, 1/s)]

¥

= —x,— », X,ud, t/s)=0.

s# s

This is true only if x,. = 0. Therefore the only solution has x =0, which is a
contradiction. QED.

COROLLARY 4.2. Given any p-mechanism II: T — A(D) with T and D
finite such that Vi, t;e T', 3(d, { _;)e D x T~ such that either
wd H=1>pd ifs) or  wd )=0<pu(d ifs),
da=(D, T, e) such that P is strictly incentive compatible in a.

Proof. Essentially the same as Corollary 4.1. Q.E.D.

Remark. The condition in Corollary 4.2 is a sufficient condition which
is not close to being necessary. I have no easily interpretable, necessary and
sufficient condition.

Remark. 1t is possible to make precise the statement that almost all
direct revelation mechanisms (including p-mechanisms) are rationalizable.
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CoroLLARY 4.3. Given D, T, finite, let
PE{y:DxT—» [0,11|Y u(d, 1)=1 Vte T}
d

be the set of all possible direct revelation mechanisms. 3 an open dense subset
P* of P such that if ueP* then e such that y is strictly incentive com-
patible in a = (D, T, e).

Proof. Write Eq. (1) from Theorem 4 as x4 =0. A sufficient condition
for the existence of the desired e is that the rank of 4 equal |T'— 1| =+,
since then x =0 is the only solution of Eq. (1). It is easy to show that if
rank (4) <t then one can perturb those values of p such that u(d, t)e
(0, 1) and generate A* such that rank (4*)=1t. (Remember if u(d, t)e
{0, 1} there is no problem.) One can also do this so that 3, u*(d, 1) =1 for
all ¢ Q.E.D.

1V.3. "Restrictions on Preferences

On¢ can argue that the fact that any c-mechanism and almost any
p-mecaanism can be rationalized is not a very reasonable test of the
hypothesis of Bayes equilibrium behavior since for most analyses there is a
natural order on outcomes induced by the physical description of types and
outcomes. That is, the abstractions are not entirely independent of the
events being modeled.

For example, in a private values auction, it is standard to let
T'=W'x V' where v'e V' is the monetary value of the object to buyer i
The other component w'e W' is used to represent uncertain characteristics
such as risk attitudes, initial wealth, etc. In this case it is assumed that
utility is positively increasing in ex post income. That is, u(d, 1) > u(d', ') if
vy —x'> v’y — x' where d= (d',.., d"), &' = {y', x'), y' is the number of
units received, and x’ is the amount to be paid by i. For examples, see
Milgrom and Weber [14], and Myerson and Satterthwaite [18].

There are several ways to use the “natural order” to restrict our choice of
models. I will concentrate on one. Since the natural.order is to be imposed

on d for a given ¢, we will assume we are given, a priori, a function w'(d, t)
which generates that order.

DEFINITION.  Given D, T, w'(d, t),.., w™(d, t) we say that e= {u', p',...,
u", _p") is copsjstcnt with w= (w',.., w"> if anq only if, for all d d and 1,
[w'(d, t)>w'(d, 1) if and only if [u'(d, t) > u'(d, t)].

Nc.e that only the preference ordering over certainty ‘outcomes, not the
preference ordering over lotteries, is preserved, and it is not required that
the ordering across vectors of types be preserved. For example, if w'(d, 1) =
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wid, 1;) (that is w is independent of ¢ ) then consistency requires that
Wid,t ¥y and w'(d, i, t¥) order D in the same way, although 1’ may
still be sensitive to the value of 1 ;. One possibility allowed is that

wW(d, )= f[wid, 1), t] where 1 >0 and fi#0.

We can now provide the central result.

THEOREM 5. Let D, T be finite. Let IT: T — A(D) be a direct revelation
mechanism, where p(d, t) is the probability assigned to d by II(t). Let the
orders w={w'(d, t),.., w'(d, t)) be given. There exists e’ = (u', p'> for each
i such that ¢ is consistent with w, p'(t)> 0, Vt, and such that IT is an icdr
mechanism in o= (D, T, ¢)) if and only if, for every i, there do not exist
a, =0Vl se T such that

Yooy Lud, yly—p(d', 1/s)] 20 (2)

y# A d'<d
Jorall de D and all t= (¢ _, l)e T, with strict inequality for one (d, t), where
d' £d if and only if wi(d', t/I) < w'(d, t/I).

Proof. The strategy of the proof is to first show that the existence of the
desired environment e is equivalent to the existence of a solution to a set of
linear inequalities. Then Farkas’ Lemma is applied to get Eq. (2).

(i) (Incentive compatibility as linear inequalities) Because of the
structure of the problem we can treat the proof separately for each t'e T"
and for each i Think of u as an r=L x K dimensional vector, where
L=|T| and K=|D|. For any utility, u'(d, ), and beliefs, p‘(¢), let
Z'(d, ty=u'(d, 1) p'(1). The vector Z'e R". Now, given /e T", let Zi be the
r—||T"| =r~ KL, vector whose components are Z'(d, t//). Let Q} be the
(r— KL,;)x r matrix such that Zi= Q!Z' The expected utility received if i
uses / in the mechanism py is

Ulw, 1) = Z;Qip.
If, instead, i were to use se T" then i’s payoff would be

Uy, s\1) = ZiQ: .
Thus I7 is incentive compatible in a = (D, T, ¢) if and only if
Z(Qi- Q) 20 (3.1)
for all i, and all [, se T".

(i) (e consistent with w as linear inequalities) Given ¢ and w, let
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Z'(d, 1)y=u'{d, t) p'(1) as before. For ¢ to be consistent with w' it must be
true that, for all d, 1, ',

wid, t)>wid', 1) if and only il w'(d, ) > u'(d', 1).
This is equivalent to, for p‘(1) >0,
wi(d, 1)) > wi(d', 1) if and only if Z'(d, 1)> Z'(d', 1).

There are a variety of ways to represent this constraint on the choice of
e. The most straightforward is first to renumber D, given 1, so that for
d=1,., D', d>d if and only if w'(d, 1) > w'(d, 1), and for d=D'+1,.., K,
w'(d, 1) =w'(d', 1) for some d'<D'. Thus, we create a strong order on
d=1,.., D" and number the d indifferent to these with numbers larger than

D'. {Since D is finite, this can be done.] We then require that there is ¢ > 0
such that

Zid, ty=Zi(d—1,1)=¢ Vd and Vi, with 2<d<D'.

This can be represented in matrix form, where Ri'is an rx (D'~ 1) matrix
for each tand ¢ is 1 x (D' — 1), as

Z'Rizeg for all ¢. (3.2)

Since Z' can be multiplied by scalars without affecting incentive com-
patibility, the restriction that ¢>0 is equivalent to the restriction that

Z'Ri>0, Vt.
For d=D'+1,.., D we require that
Zd, 1)—Z'(d',1)=0
and
Z(d, 1)~ Z'(d, 1)=0,

where d' is the appropriate number <D’ such that wi(d, 1) = w'(d’, t). This
can also be represented in matrix form, where I/ is an r x 2(D — D’) matrix
for each ¢, as

Z'Tz0  forall ¢ (3.3)

At this point we know that there is an e consistent with w such that I7 is
incentive compatible in (D, T, e) iff there are vectors (Z',..., Z") such that
Egs. (3) are true. But this is true iff Vi, V/e 7%, and Ve > 0, 3Z; such that

Z(Qi—Q)uz0  VseT' (4.1
ZiR,ze i _,eT | (4.2)
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and
Zill, >0 Vi_,eT, (4.3)

where R, and I, are the appropriate modifications of Ri and I'.
Applying Farkas’ Lemma (see, eg., Gale [2, Theorem 27]) 3zZi
satisfying Eq (4) 1f and only if 3a, =0, for all seT’, y,,,20, for all

1<d<D, t_,eT ' and 8},20, 62,20 for D'+1<d<K, and ¢_,eT
such that
dZ VamXe=1, (5.1)
1,;;)‘ forall ¢ _,, (5.2)
‘é, ag[(Q)— Q%) ulay+ Yaun— Vas 1un
+ Z = %) =0 (53)

for all d,t _,e D x T " with 1 <d<D’, where d'=d if and only if d'>D’
and wi(d', t/l) = w'(d, t/I), and

Y ay[(Qi— Q) wlayi— (8Yyy— 83, ,) =0 (54)

s#1

foralld > D', all t_;eT™"

Solving Egs. (5.3) and (5. 4) for y“,, and letting = represent the
ordering derived from w', we get

VYd+ 1,1= Z z o;15[(Q;.—Qi) ll].}://

d=d s#l1

for all d,¢_;, d< D’ Since [(Qi— Q%) y],;,,,=u(c?, t/I) — u(d, t/s) and since
Y4120 for all d,¢_; with strict inequality for at least one d, t_;, the
theorem is proven. Q.E.D.

Remark. 1f, in the statement of Theorem 5, we replace “icdr” with
“strictly icdr” and replace “=0” with “>0” in Eq. (2), the statement
remains true.

If we restrict our attention to c-mechanisms, a very natural, intuitive,
necessary and sufficient condition can be detailed. But first we need to
define another property of direct revelation mechanisms.

DEerFINITION. Given IT: T— D and preferences w= (w',.., w"), where

-
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w': Dx T— R'. We say that truth is dominated in IT for w if there is an i, a
t'e T, and se T, with ¢ 5t s such that

WLII(t/s), 1 _y, 1,12 w1, 1]

for all 1 _;e T~ with strict inequality for at least one ¢ _,e T~ We say that
truth is weakly dominated in II for w if there is an i, a ‘e T", and se T", with
' # s such that

wlII(t/s), t_;, ;12w (1), t})  forallt ,eT "

That is, truth is dominated in I7 for w if there is some type ¢ for whom
there is a strategy which guarantees a better outcome than . An example
of such a mechanism and preferences is given after the next result.

CoroLLARY 5.1. Given the c-mechanism IT: T — D and preferences w,
with T and D finite, (a) 3a = (D, T, e) such that e is consistent with w and IT
is an icdr mechanism in o if and only if truth is not dominated in II for w.
(b) 3a=(D, T, e) such that ¢ is consistent with w and I1 is u strictly icdr
mechanism in a if and only if truth is not weakly dominated in IT for w.

Proof. We prove (a). (b) can be proved in a similar way. (if) If
wLII(1), 11 =w'[11(1/s), (] for all 1_, then Eq. (2) holds with equality for
all d,r_;, and we are done. If not, 3r ;e T ' such that w'[I(1), t]>
wilII(t/s), t]. Let d= I1(¢/s). Then

wilII(1), 11> wi(d, t) Z w[ II(1)s), 1].
Let )

B={s"e T'|w(II(t/s"), ) 2 w'(d, 1)}.

Equation (2) of Theorem 5 for (d, ¢ _,) becomes —3 _57(¢), s) =0, where
y!(¢', 5) is the appropriate y. Therefore, y'(¢', s) =0 for all se B. Continue for
all i, all se T", and all . It must be true that yi, =0 Vi, /, se T". Therefore,
strict inequality is untrue for any d, ¢ _,.

(only if) Suppose truth is dominated in 7 for w. There is i and ¢/, se T"
such that w(1I(t/s), 1) = w'[ 11(1), t] for all ¢ _; with strict inequality for one
t .. Lety% =0 for all k, I, s except these i, s, 1". Let yi,=1. For all k and for
i when [#¢', Eq. (2) of Theorem 5 is trivially true. For i, f', s, let Vd, 1 _,,

fi(da t_iss, I,-)=’)«',1X[ﬂi(d, L t)_"i(ds I/S, t)]9
where

0 if w[II(t/s), t]1= wi(d, 1),
1 otherwise.

n'(d, t/s, t) = {
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Now if w[I(t/s), t]Sw'(d,t) then w'[II(t), ]S w'(d, t). Therefore,
fitd, t_;, s, t;)=0. It is strictly greater for one ¢_;, d since w'[II(z), 1] <
w[ II(t/s), t] for one t_;. (Let d=1II(t).) Thus 3y 2 0 satisfying Eq. (2).

QED.

We can rationalize the observed behavior if and only if truth is never a
dominated strategy for any type. To see what type of restriction this is,
consider the following situation which often arises in the early rounds of
many experiments. Dominant strategies are available but not used. For
example, many times subjects will bid less than their true values in sealed-
bid second price auctions. In these, the highest bidder receives the item and
pays an amount equal to the second highest bid. It is a dominant strategy
to bid your true value. Can we explain this phenomenon? The answer is no.

COROLLARY 5.2. Given finite D, T, preferences w, and {M, g) such that
3(t'y=m'is a strictly dominant strategy; that is,

w'lg(m/o'(t)), 11z w'l g(m), ]

for all me M, with strict inequality for at least one me M. Let B'(1'y=m' be
the observed behavior such that, for some i, Bi(t) # 6'(t') for some t'e T' and
such that {¥'|6'(i)y= B (')} # & for all '€ T'. Let II(t)= g(B(1)). B cannot
be rationalized; that is, Be consistent with w such that II is an icdr
mechanism in a=(d, T, e).

Proof. We know that

w'lg(B(1)/0' (1), 12wl g(B(1)), t']
for all ¢_; with strict inequality for at least one. Let
i'e {s|B'(s)=0'(t")}.
Then
wlII(y#"), 1 Z w'LII(2), ']

for all ¢r_, with strict inequality for at least one z_, Thus truth is
dominated in I7 for w. Q.E.D.

Individuals who do not foliow a dominant strategy when one is available

cannot be rationalized. When there is no dominant strategy, most behavior
can be rationalized.

COROLLARY 5.3. Given finite D, T, preferences w, mechanism {M, g,
and observed behavior B': T' — M’ for each i such that B(T')= M', 3e con-
sistent with w such that B is a Bayes equilibrium of (M, g> ina=(D, T, e)

-
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if and only if, Vi, B’ is not a dominated strategy; that is, for cach '€ T' there
is no m'e M such that w'[ g(B(1)), t1 Ew'l g(Ble)m'), t] for all t €T '
with strict inequality for one t .

Proof. Let II(t)= g(p(1)). B not dominated if and only if truth is not
dominated in I1. Q.ED.

In words, if and only if some type of agent picks a message which is
dominated by some other, can we not rationalize behavior. Any behavior
resporsive to sure things can be rationalized.

A simple example with which to illustrate the results arises in the context
of a one buyer-one seller bilateral bargaining game (Myerson and Sat-
terthwaite [18]). In this game

1 if buyer gets the item,

B B
wild, t)=v"y—x where y = .
(d 1) : ’ {0 otherwise,

and x is the monetary transfer to the seller. A direct revelation mechanism
is IT(t) = [ y(1), x(+)]. Truth is dominated iff 3v® and Z e T” such that

2y, V) — x(v®, v’) 208)(Z, v*) - x(Z, v") -

for all v*e T°, with strict inequality for at least one v’. If, for each pair
vB, B2, there is at least one value ¥° such that

(v® = %) [ y(v? 5°) — p(8% )] 20

then truth cannot be dominated and y can be rationalized for most x. Myer-
son and Satterthwaite’s structure plus incentive compatibility requires this
inequality to hold for all #*. Our result shows that it need hold only for one
#°, which can differ for different pairs v®, 6%, This fact generalizes to multi-
unit auctions (Gresik and Satterthwaite [4]) and provides the logical foun-
datior, along with the revelation principle, for the observation that
behavior in oral double auctions which satisfies the Easley-Ledyard [1]
hypotaeses is rationalizable as Bayesian equilibrium behavior consistent
with preferences which are increasing in money.

The above results for ¢-mechanisms can be easily generalized to cover all
mechanisms with the following definition:

DEerFINITION.  Given [IT: T — A(D) and preferences w, we say that truth is
dominated in IT for w if there is an i and ¢, se T, t' # s such that

Z u(d’t—i’ ti)é Z #(dat—i’s)

dzd dz d

for all d', t_,, with strict inequality for at least one (<, ¢t ).
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That is, I7(¢/s) provides a probability measure on D which stochastically
dominates (using w') the probability measure if truth, r, is used. This
definition is entirely consistent with that given earlier and all results
generalize in the obvious manner.

In conclusion, any direct revelation mechanism for which truth is not a
dominated strategy can be rationalized. This means that, given any
preferences and any mechanism, any behavior which is not dominated for
those preferences can be rationalized in a way consistent with those preferen-

ces, and any behavior which is not weakly dominated can be strictly
rationalized.

1V.4. Restrictions on Preferences and Beliefs

One should be interested whether the weak conditions developed in the
previous sections for rationalizing performance rely mainly on the ability to
manipulate utility or on the ability to manipulate beliefs. It is easy to show
that it is indeed the former. If we are allowed to choose any u’ and, in par-
ticular, a «’ which may depend on 1 _;, then even if we are constrained to a

single vector of beliefs, we can rationalize almost anything. This follows
from an observation in Myerson {17].

THEOREM 6. If (a), IT is an icdr in a, and (b) (p*',.., p*") are priors on
T_, for i=1,.., n such that p*'(t)> 0 whenever u'(d, t) p'(t)> 0, then II is an
icdr in o* where a* = (D, T, u*, p*) and

u*(d, 1) = {[u"(d, O POYPH I P00,

0 otherwise.

Thus, given (p*',.., p*") with p*(t)>0 Vi, t (we call such p* positive
priors), Il is rationalizable, constrained by w, iff II is rationalizable con-
strained by w and (p*',..., p*").

Proof. Straightforward.

Thus you give me a performance function, 7, preferences, w, and
positive priors p*. If truth is not dominated in I7 for w then I can always
find utilities, u*, consistent with w, which rationalize I7 as the outcome of
Bayesian equilibrium behavior.

Stated another way: for any game with positive priors and any strategies
which are not dominated there is a monotonic increasing transformation of

the utilities such that those strategies are a Bayes equilibrium in the trans-
formed game.

IV.S. Restrictions on Utility

To now we have seen that even if preferences and beliefs are prespecified,
almost any performance function can be incentive compatible in some
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environment. On the other hand, we know from Gresik and Satterthwaite

{4], Milgrom and Weber [14], Myerson and Satterthwaite (18], and

Wilson [21] that the joint assumptions of independent beliefs, transferable

utility, risk neutrality, and incentive compatibility do restrict possible per-

formance. Therefore, we should not expect to be able to rationalize all per-

formance if utilities are prespecified. Much can, however, still be done.
Our first result provides the basis for the rest of this section:

THEOREM 7. Let I1: T — A(D), with D and T finite and let u{d, t} be the
probability assigned by II(t) to de D. Let the utilities w = (w',..., w") be given
where w': Dx T — R' for all i. There exist priors p* = (p*',.., p*"), where
p*i(-, t,)e A(TY), such that II is an icdr mechanism in o= (D, T, w, p*) if
and only if there do not exist yi 20 for each i, and all I, se T' such that

d

2 Vs [Z wild, i (uld, ¢, D) — pld, 1y, s))} <0 (6)

foralit_,eT "

Proof. Il is an icdr mechanism in (w, p*) if and only if for all i, and all
I seT i

Z Z wi(d’ t—i’ 1)[.“(‘1’ t—~i’ 1)_#(‘1’ tAia 3)] p*i([—h 1)20

t_; d

Now apply Gale [2, Lemma 2.10], another variation of Farkas’ Lemma,
to get the result. QE.D.

As it stands, this is not very informative. Some sufficient conditions may
provide a little help.

COROLLARY 7.1. Given the c-mechanism II: T— D, and the utilities
w=(w,.., w">. If, for each i and each t'e T', 3i _; such that, for all se T',

wilII(E_;, 1)), 8, 6,1 2w I(E_/s), E_;, 1], (7
then Ap* such that I1 is incentive compatible in a = (D, T, w, p*).

Proof. Given such a 7_; it is impossible to satisfy Eq. (6) with non-
negative yi . Q.ED.

Thus, if there is at least one possible vector of others’ types such that
agent i would not want to misrepresent, when faced with those types, we
can provide beliefs such that agent i will never want to misrepresent. One
such obvious prior is p*{(f_;, t;,)=1. If inequality (7) is strict, it is also
possible to find an appropriate p* such that p*/(¢_;, ,)>0 for all ¢_,.
Thus, generally we could restrict our attention to positive priors.
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Remark. This result is reminiscent of the results in Ledyard [10],
where it is shown that, when the mechanism cannot depend on common
knowledge beliefs, incomplete information cannot make a mechanism
incentive compatible. Here, even if the mechanism can depend on common
knowledge beliefs, a similar result obtains in one direction. If I7 is incentive
compatible under complete information in (7 _,, ¢;) then 3p*' such that I7 is
incentive compatible in the incomplete information environment, since if i
believes 7, is highly probable then i will always use the strategy ¢"

CorROLLARY 7.2. Corollary 7.1 can be applied to p-mechanisms if Eq. (7)
is replaced by, Vs,

Z Wi(d’ f——i, ti) lu'(d’ f—i’ t,);z wi(d, f—ia ti) .u(d’ f i S)-

d d

Proof. Same as Corollary 1. Q.E.D.

A slightly more general, but still obvious, sufficient condition can be
given.

COROLLARY 7.3. IfViand t;,e T'AB< T~ ' such that

Y Y wid (J[ud, 0 —u(d, 1/s)]20  VseT,

B d
then Ap* such that II is incentive compatible in « = (D, T, w, p*).
Proof. Let

1 .
m if t_;€ B,
p*i(t) = Q.E.D.
0 otherwise.

Using the Myerson-Satterthwaite example with w'(dt) = vy(t) — x(t), one
can see that if beliefs can be type dependent then many outcome rules,
{y(+), x(+)), can be rationalized. For example, there is no necessity for
>, y(t_;, v) to be non-decreasing in the buyer’s value, v.

For completeness, let us consider one further restriction to independent
beliefs.

THEOREM 8. Let IT: T — A(D) with D and T finite and let u(d, t) be the
probability assigned d by II(t). Let the utilities w = (w',.., w") be given.
There exist priors for each i, p* € A(T™"), independent of t,, such that IT
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is incentive compatible in a=(D, T, w, p*) if and only if 3 yi.20 Vi and
every I, se T such that, for all t_;e T~

Y Y Y widt o, Dud 1 D)= pldt 9] ¥, <0.
s 1 d

Procf. Virtually identical to the previous proof. Q.E.D.

Sufficient conditions can also be provided for this case although they are
becoming increasingly uninformative. For example if there is a 1_; such
that

Z wi(dv t,,«, I)[“(da tfiv 1)_“(‘1, t~i’ S)] ZO
d

for all se T% and all [e T' then IT can be rationalized. Obviously, this is not
close to being a necessary condition.

It is highly likely that a complete characterization of rationalizable [T
given prior restrictions on utilities is not possible and each specific utility
restriction must be handled on a case by case basis. Some success has been
achieved by others in this direction. One example is the case of private
values and independent beliefs. Another is the case of affiliated values. The
reader can surely provide others.®

V. SUMMARY AND OPEN QUESTIONS

There are at least three conclusions which one should reach as a result of
the above theorems:

(1) Any observed behavior can be rationalized as the outcome of a
Bayesian equilibrium of some game.

(2) Even if types, outcomes, preferences on outcomes, positive prior
beliefs, and an informationally consistent game form are all specified a
priori, all strategic behavior which is not dominated can be rationalized as
the outcomes of a Bayesian equilibrium of a game with the given game
form, those priors and utilities consistent with those preferences.

(3) Only when onc places severe a priori restrictions on the
functional forms of utilities and priors does one get any meaningful restric-
tions on behavior. The assumptions of risk-neutral quasi-linear preferences
and independent values are very special.

These conclusions are similar to those, from Walrasian general

5 The referee has pointed out that “investigation of weak restrictions on utility, such as risk
aversion, might... be gite interesting.” I agree, but have no specific thoughts or conjectures.
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equilibrium theory, which apply to aggregate excess demand functions (see
Sonnenschein [20]). They do not imply that the hypothesis of Bayesian
equilibrium has no content; rather that it is only the combination of
assumptions on utilities, priors, and equilibrium which jointly provide
meaningful implications.

Several other observations can also be made. First, a full charac-
terization of the triples of utilities, priors, and performance, such that that
performance is incentive compatible for those environments, remains to be
done. Second, among the class of incentive compatible direct mechanisms
are those which are efficient; that is, either those one might expect to arise
as the result of negotiation prior to play or those which are durable.
Although it was unnecessary to consider efficiency when explaining ob-
served behavior, it would be nice to know whether the hypothesis of
efficiency places any additional meaningful constraints on behavior. That
is, “What behavior can be rationalized as both incentive compatible and
efficient?” My conjecture is that the conclusions will be similar to those
above. Although a full analysis remains for future research, a simple obser-
vation may explain the basis for the conjecture. As is explained in Myerson
[17] and Wilson [22] there are several concepts of efficiency. The two
most commonly used are ex ante and interim. The key observation is that,
for this line of research, the two are equivalent. That is, a particular perfor-
mance function will be an interim efficient direct revelation mechanism in
an environment if and only if there is a linear transformation of utilities
such that that performance function is also an ex ante efficient mechanism
in the transformed environment.® Since the transformation is linear it is, in
the language of Myerson [17], evaluation-equivalent. Thus Bayesian
equilibrium and incentive compatibility are unchanged. This means that
behavior can be rationalized as interim efficient if and only if it can be
rationalized as ex ante efficient. (For fixed utility, ex ante implies interim,
but not conversely. For fixed behavior, they are equivalent.) Although it
remains to be established, I suspect that only a fairly simple extra condition
is needed to show that if there is an environment such that a given perfor-
mance function is an incentive compatible direct revelation mechanism,
then there is a reasonable transformation of the utilities in that environ-
ment such that that behavior is interim efficient, and therefore, ex ante
efficient.

As a third observation, none of the results in this paper should be taken
as diminishing the normative content of Bayesian behavior in game-
theoretic situations. Bayesian equilibrium remains a powerful way of think-
ing about strategic situations in which players have incomplete infor-
mation. It is not unreasonable that players should play that way. However,

¢ Simply use the welfare weights associated with the interim efficiency.
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in spite of the validity of the normative content of Bayesian equilibrium, I
think one now has to be very careful of the conclusions one draws from
models which employ Bayesian behavior as a positive theory. Since vir-
tually any behavior can be rationalized with some utility function, any
behavior can be justified as the result of a Bayesian equilibrium.
Implications of models using specific utilities and priors need not
necessarily be applicable to all data. For example, combined with the
revelation principle, the work of Gresik and Satterthwaite [4] tells us’
that, in auctions involving multiple units, if there is risk neutrality, trans-
ferable utility, and independent uniform priors then no extra marginal units
will be traded in say, oral double auctions under Bayesian behavior. The
experimental evidence is strongly to the contrary (see Easley and Ledyard
[1]). Does this mean that the observed behavior is unreasonable or that
the hypothesis of Bayesian equilibrium is inapplicable? Obviously not. Tt
strongly suggests either that risk attitudes are important or that beliefs may
not be independent. The specific functional assumptions are probably at
fault, not the theoretical structure. We must look elsewhere for principles
to explain these observed behaviors.® It is an open question whether there
are natural restrictions on utility which prevent the uninformative
explanation that all experimental and market generated observations are
Bayesian equilibrium outcomes.

The Bayesian approach to analyzing strategic situations with incomplete
inforraation remains a compelling model. Nevertheless, care must be exer-
cised so that conclusions are drawn from general principles and not just
from examples.’ It is highly likely that a close fit to the data and trans-

ferability across institutions may ultimately be the only real test of the
theory. )
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